CHAPITRE 2

Entropie et deuxieme principe

2.4 Se frotter les mains

Yok Se frotter les mains est un processus dissipatif qu’on désire modéliser
et quantifier. On consideére les mains comme des solides indéformables et on
suppose qu’il n’y a pas de transfert de chaleur entre les mains et ’environne-
ment.

1) Déterminer la puissance extérieure Pt dissipée par le frottement durant
ce processus en termes de la force de frottement FT et de la vitesse v,
supposée constante, d’'une main par rapport a I’autre.

2) A température ambiante T', déterminer la source d’entropie g de ce pro-
cessus.

Application numérique

|F¥|| = 1N, |v|| = 0.1m/s et T = 25°C

Solution

1) Par rapport au référentiel du centre de masse des mains, chaque main se
déplace avec une vitesse de norme constante ||v/2]]. Il y a deux types de
forces agissant sur le systeme formé des deux mains : des forces extérieures
d’entrainement de norme ||[F ‘|| et des forces intérieures de frottement
de norme ||F ™| exercées sur chaque main. La puissance extérieure Pt
exercée sur le systeme des deux mains, qui est due uniquement aux forces
extérieures d’entrainement exercées sur chaque main, s’écrit,

v v
Pext — Fext . (7) 7Fext . (7 7) — Fext -v
() (2) + (- P (-2
D’apres la deuxieme loi de Newton (1.21) appliquée a chaque main qui se
déplace a vitesse constante, et donc a quantité de mouvement constante par

rapport au référentiel du centre de masse des mains, les forces extérieures
sont égales et opposées aux forces de frottement,

Fext +Ffr -0
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Compte tenu de cette relation, la puissance extérieure P < s’écrit en termes
de forces de frottement comme,

P =_F" v =01W

car F% . v < 0 étant donné que la force de frottement s’oppose au mouve-
ment.

Comme on considere les mains comme des solides indéformables, il ne peut
pas y avoir de déformation des mains par ’environnement, ce qui signifie
que la puissance mécanique de déformation du systeme est nulle, c’est-a-
dire que Py = 0. De plus, comme on suppose qu’il n’y a pas de transfert
de chaleur entre les mains et ’environnement, le courant de chaleur est nul,
c’est-a-dire que I = 0. Ainsi, le premier principe (1.18) se réduit 4,

E — cht

Comme le mouvement des mains se fait avec une vitesse de norme constante
|lv/2]] par rapport au référentiel du centre de masse des mains, ’énergie
cinétique du systeéme est constante. Par conséquent, étant donné que 1’éner-
gie F est la somme de ’énergie cinétique constante et de 1’énergie interne
U, les dérivées temporelles de ces deux énergies sont égales,

E=U

Comme les mains sont considérées comme des solides indéformables, le
volume du systeme est constant, c’est-a-dire que V' = 0. Par conséquent,
Iéquation d’évolution (2.19) de I’énergie interne se réduit a,

U=TS

De plus, le courant de chaleur est nul, c¢’est-a-dire que Ig = 0. Ainsi, I’équa-
tion d’évolution de I’entropie (2.29) se réduit a,

S =34

Finalement, la source d’entropie s’écrit en termes de la force de frottement
comine,

. U E pext Ff.p
E = = e— = — = = — = . 1 —4 K
s=98 =7 - 7 3.36-107* W/

Le systeme constitué des deux mains n’est pas un systéme simple. En effet,
les vitesses des deux mains sont différentes, car elles ont un mouvement
relatif 'une par rapport a l'autre. Par conséquent, on doit attribuer une
fonction d’état vitesse et une variable entropie spécifique a chaque main.
En particulier, la relation (1.43) n’est pas applicable parce que le centre de
masse des deux mains est immobile bien que la puissance extérieure P ¢xt
soit clairement non nulle.
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2.6 Echauffement par brassage

Yrrok  Dans une expérience analogue a celle de Joule, on utilise un moteur
électrique au lieu d’un poids de masse M pour brasser un liquide incompressible
homogene (fig. 2.1). On consideére que la puissance extérieure P°*' due au
moteur est connue, que la vitesse angulaire w des pales du brasseur, de moment
d’inertie I, est constante et que le liquide reste immobile. De plus, on suppose
que 'énergie interne U est une fonction de la température T telle que U =
M cpr T, ou le coefficient ¢y, qui représente la capacité thermique par unité de
masse, est connu et indépendant de la température.

1) Déduire 'accroissement de température AT;_,; dii au brassage de 1'état
initial ¢ au temps t = 0 a ’état final au temps ¢.

2) Déterminer expression de la variation d’entropie AS,_, ; durant ce proces-
sus dont la température initiale est Tj.

Application numérique

M=200g, P*' =19 W, cpy =3 J g K™, t =120 s et Ty = 300 K.

Solution

1) Le systéme constitué du brasseur et du liquide n’est pas un systéme simple
puisque le liquide est immobile et que le brasseur est en rotation. Etant
donné qu’il n’y a pas de variation de volume, pas transfert de chaleur ou
de matiere avec I’environnement lors du brassage, la puissance mécanique,
le courant de chaleur et le courant énergétique de matiere sont nuls,

Py =Ig=1Ic=0

L’énergie totale du systeme (1.36) est la somme de ’énergie cinétique de
rotation des pales du brasseur et de ’énergie interne du liquide,

Fig. 2.1 Un brasseur avec des pales de moment d’inertie I plongées dans un liquide visqueux
est entrainé par un moteur électrique a vitesse angulaire constante w.
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ou I est le moment d’inertie des pales du brasseur par rapport a ’axe de
rotation. Etant donné que la vitesse angulaire w est constante, 1’énergie
cinétique de rotation des pales est également constante. Par conséquent, en
se placant dans le référentiel ou le liquide homogene est au repos, le premier
principe (1.71) se réduit a,

E=U=p>

En intégrant ’équation d’évolution de I’énergie interne durant ’intervalle
de temps t qui suit le temps initial £ = 0, on obtient la variation d’énergie
interne,

Us t At t
AUHf:/ dU:/ Udt’:/ Pextdt’:Pext/ dt' = Pt
U; 0 0 0

L’augmentation d’énergie interne AU;_,; pour une augmentation de tem-
pérature AT;_, ¢ du liquide s’écrit,

AUi—)f =Mecy ATi—)f

Ainsi, en comparant ces deux équations, on obtient I’expression suivante
pour 'augmentation de température,

PeXtt

Le premier principe (2.39) s’écrit,

. . . ext
U=T8=pt ainsi S:PT

Etant donné que Ty est la température au temps initial ¢ = 0, la variation
de température s’écrit,

ATy =T-Tp

Par conséquent, le résultat obtenu au point précédent est mis sous la forme
suivante,

ext
T=Ty+ Mo t
Ainsi, la différentielle de ’entropie s’écrit,
ext
) pext Pext gt %A/IZFO dt
dS = S5dt = T dt = Dot = Mecy — e
To + Mens t 1+ m t

L’accroissement d’entropie durant le processus de brassage est obtenu en
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intégrant cette équation par rapport au temps,

, Pext dt/
S5 S M cpr T

ASHf:/ dS = dS = M cpr —
S 5@) 0 Ty

M ey Ty

Pextt
=MeyIn(1l4+4 —n— ) =755JK!
M n( + MCMT0>

2.8 Processus adiabatique réversible sur un gaz

Yevokk Un gaz parfait & pression p et volume V est tel que son énergie interne
est donnée par U = cpV, ol ¢ est une constante sans dimension. Déterminer la
pression p (V) pour une compression ou une expansion adiabatique réversible.

Solution

Comme le processus est adiabatique et réversible, il n’a pas de variation d’en-
tropie. On peut donc utiliser le volume V' comme unique variable d’état. Ainsi,
Pénergie interne s’écrit U (V) = ¢p (V) V. La dérivée de lénergie interne par
rapport au volume est donnée par,

du d dp
v —avlerV)=eqyVaer=-»
qui peut étre remis en forme comme,
dp av
a4 -0
P Y

N

ou v = (¢+1) /e. L’intégration de cette expression de I’état initial (p;, V;) &
Iétat final (py, V) est écrite comme,

i dp Viav
— 4+ — =0
/p p vi V

k3

ce qui donne,

y

Df Vi . by Vf
In{—= ) +~vln () =0 ainsi In =0

(pz‘) N7 (pi 4

Par conséquent, les variables initiales et finales sont liées par,

piV; =psV{

ce qui donne l'identité,
pV7 = cste
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2.10 Compression thermique d’un ressort

Yroek  On considere un piston de masse négligeable coulissant sans frotte-
ment dans un cylindre de section d’aire A, attaché a un ressort dont la constante
de rappel est k (fig. 2.2). Lorsque le cylindre est vide, le piston se trouve
en position xg. On le remplit d'un gaz parfait qui satisfait 1’équation d’état
pV = NRT. L’énergie interne du gaz est donnée par U = ¢ NRT ou ¢ > 0
est une constante et R > 0 également. Apres remplissage, il se trouve alors a
I’équilibre en position initiale z;. On chauffe le cylindre qui se trouve alors a
I’équilibre en position finale ;. On suppose que ce processus est réversible et
que le systeme se trouve dans une enceinte a vide, c’est-a-dire que la pression
dans l’enceinte est nulle. La masse du piston n’est pas prise en considération

ici.

Ty

|
0 T

Fig. 2.2 Un piston enfermant un gaz passe de la position x; & la position zy, lorsque le
gaz contenu dans le cylindre est chauffé. Le piston est retenu par un ressort de constante
élastique k. La position au repos du ressort est en xq.

1)

2)

Déterminer les volumes initial V; et final V}, la pression initiale p; et fi-
nale py, et les températures initiale T; et finale Ty du gaz en termes des
parametres k, A, xo, x; et x¢.

Montrer que la dérivée de la pression p par rapport au volume V est de la
forme,

dp k

av - A2
Déterminer le travail — W;_,; effectué par le gaz sur le ressort lorsque le
piston se déplace de z; a x; en termes des parametres k, x; et xy.

Déterminer la variation d’énergie interne AU;_,; du gaz lorsque le piston
se déplace de x; a xy en termes des parametres k, ¢, Tg, T; et Ty.

Déterminer la chaleur ;s fournie au gaz lorsque le piston se déplace de
x; a xy en termes des parametres k, ¢, xo, x; et Ty.

Solution

1)

Dans les états d’équilibre initial ¢ et final f, les volumes initial et final du
gaz parfait sont,
V:=Aux; et Vi=Axy
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et les pressions initiale et finale du gaz parfait valent,

F ok Fro ok
pi:Z:Z(xi_xo) et pf:X:Z(mf—xo)

ou F; et F sont les normes initiale et finale de la force élastique agissant
sur le ressort. Vu que le processus est réversible, la pression du gaz parfait
est égale a la pression exercée par le ressort. Les températures initiale et
finale du gaz parfait sont,

pzvz k’ pf Vf k‘
} _ ) T, = _
i=NR - NR@ T m)w et F=NR = NR T w0y

La variation infinitésimale de pression du gaz dp peut étre exprimée en
termes de la variation de volume infinitésimal dV grace a la variation infi-
nitésimale de la norme de la force élastique dF' = k dx,

1 k: k
Ainsi,

@— i = cste

v — Az

Par conséquent, la pression p est une fonction linéaire du volume V,

k
p=7 V=MW
Le travail — W;_,; effectué par le gaz parfait sur le ressort est donné en
termes de V; et V; par,

- Hf:/ pdvzﬁ/v (V= Vi) dV

k k
2A2 (Vf VZ) AQVO (Vf - Vz)

On peut réécrire ce résultat en termes de x comme,

B (a2 = 2) = ko (wy — m1)

i—f = 9
k 2 2

§<(xf— x0)” — (x; — ) >>O

Le travail effectué par le gaz parfait sur le ressort est égal a la variation
d’énergie élastique du ressort lors de sa compression, ce qui signifie qu’il
est entierement utilisé pour comprimer le ressort. Ceci est une conséquence
du fait que la dilatation du gaz parfait est un processus réversible.

4) La variation d’énergie interne AU,_,; est donnée par,

AUy =cNR(Ty — T;) =ck ((xf —zo)xy — (x5 — xo)xi> >0
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5) Compte tenu du premier principe (1.65), la chaleur fournie au gaz s’écrit,
Qimsp =AU — Wiy =ck ((xf — zo)xf — (T — X0) xz>

—|—§<(zf— I0)2— (z; — 1:0)2) >0



