
Chapitre 2

Entropie et deuxième principe

2.4 Se frotter les mains

Se frotter les mains est un processus dissipatif qu’on désire modéliser
et quantifier. On considère les mains comme des solides indéformables et on
suppose qu’il n’y a pas de transfert de chaleur entre les mains et l’environne-
ment.

1) Déterminer la puissance extérieure P ext dissipée par le frottement durant
ce processus en termes de la force de frottement F fr et de la vitesse v,
supposée constante, d’une main par rapport à l’autre.

2) À température ambiante T , déterminer la source d’entropie ΣS de ce pro-
cessus.

Application numérique

∥F fr∥ = 1N, ∥v∥ = 0.1m/s et T = 25◦C

2.4 Solution

1) Par rapport au référentiel du centre de masse des mains, chaque main se
déplace avec une vitesse de norme constante ∥v/2∥. Il y a deux types de
forces agissant sur le système formé des deux mains : des forces extérieures
d’entrâınement de norme ∥F ext∥ et des forces intérieures de frottement
de norme ∥F fr∥ exercées sur chaque main. La puissance extérieure P ext

exercée sur le système des deux mains, qui est due uniquement aux forces
extérieures d’entrâınement exercées sur chaque main, s’écrit,

P ext =
(
F ext

)
·
(v
2

)
+
(
−F ext

)
·
(
− v

2

)
= F ext · v

D’après la deuxième loi de Newton (1.21) appliquée à chaque main qui se
déplace à vitesse constante, et donc à quantité de mouvement constante par
rapport au référentiel du centre de masse des mains, les forces extérieures
sont égales et opposées aux forces de frottement,

F ext + F fr = 0
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Compte tenu de cette relation, la puissance extérieure P ext s’écrit en termes
de forces de frottement comme,

P ext = −F fr · v = 0.1W

car F fr · v < 0 étant donné que la force de frottement s’oppose au mouve-
ment.

2) Comme on considère les mains comme des solides indéformables, il ne peut
pas y avoir de déformation des mains par l’environnement, ce qui signifie
que la puissance mécanique de déformation du système est nulle, c’est-à-
dire que PW = 0. De plus, comme on suppose qu’il n’y a pas de transfert
de chaleur entre les mains et l’environnement, le courant de chaleur est nul,
c’est-à-dire que IQ = 0. Ainsi, le premier principe (1.18) se réduit à,

Ė = P ext

Comme le mouvement des mains se fait avec une vitesse de norme constante
∥v/2∥ par rapport au référentiel du centre de masse des mains, l’énergie
cinétique du système est constante. Par conséquent, étant donné que l’éner-
gie E est la somme de l’énergie cinétique constante et de l’énergie interne
U , les dérivées temporelles de ces deux énergies sont égales,

Ė = U̇

Comme les mains sont considérées comme des solides indéformables, le
volume du système est constant, c’est-à-dire que V̇ = 0. Par conséquent,
l’équation d’évolution (2.19) de l’énergie interne se réduit à,

U̇ = T Ṡ

De plus, le courant de chaleur est nul, c’est-à-dire que IQ = 0. Ainsi, l’équa-
tion d’évolution de l’entropie (2.29) se réduit à,

Ṡ = ΣS

Finalement, la source d’entropie s’écrit en termes de la force de frottement
comme,

ΣS = Ṡ =
U̇

T
=

Ė

T
=

P ext

T
= − F fr · v

T
= 3.36 · 10−4 W/K

Le système constitué des deux mains n’est pas un système simple. En effet,
les vitesses des deux mains sont différentes, car elles ont un mouvement
relatif l’une par rapport à l’autre. Par conséquent, on doit attribuer une
fonction d’état vitesse et une variable entropie spécifique à chaque main.
En particulier, la relation (1.43) n’est pas applicable parce que le centre de
masse des deux mains est immobile bien que la puissance extérieure P ext

soit clairement non nulle.
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2.6 Échauffement par brassage

Dans une expérience analogue à celle de Joule, on utilise un moteur
électrique au lieu d’un poids de masseM pour brasser un liquide incompressible
homogène (fig. 2.1). On considère que la puissance extérieure P ext due au
moteur est connue, que la vitesse angulaire ω des pales du brasseur, de moment
d’inertie I, est constante et que le liquide reste immobile. De plus, on suppose
que l’énergie interne U est une fonction de la température T telle que U =
M cM T , où le coefficient cM , qui représente la capacité thermique par unité de
masse, est connu et indépendant de la température.

1) Déduire l’accroissement de température ∆Ti→f dû au brassage de l’état
initial i au temps t = 0 à l’état final au temps t.

2) Déterminer l’expression de la variation d’entropie ∆Si→f durant ce proces-
sus dont la température initiale est T0.

Application numérique

M = 200 g, P ext = 19 W, cM = 3 J g−1K−1, t = 120 s et T0 = 300 K.

2.6 Solution

1) Le système constitué du brasseur et du liquide n’est pas un système simple

puisque le liquide est immobile et que le brasseur est en rotation. Étant
donné qu’il n’y a pas de variation de volume, pas transfert de chaleur ou
de matière avec l’environnement lors du brassage, la puissance mécanique,
le courant de chaleur et le courant énergétique de matière sont nuls,

PW = IQ = IC = 0

L’énergie totale du système (1.36) est la somme de l’énergie cinétique de
rotation des pales du brasseur et de l’énergie interne du liquide,

E =
1

2
I ω2 + U

I

Fig. 2.1 Un brasseur avec des pales de moment d’inertie I plongées dans un liquide visqueux
est entrâıné par un moteur électrique à vitesse angulaire constante ω.



4 Entropie et deuxième principe

où I est le moment d’inertie des pales du brasseur par rapport à l’axe de
rotation. Étant donné que la vitesse angulaire ω est constante, l’énergie
cinétique de rotation des pales est également constante. Par conséquent, en
se plaçant dans le référentiel où le liquide homogène est au repos, le premier
principe (1.71) se réduit à,

Ė = U̇ = P ext

En intégrant l’équation d’évolution de l’énergie interne durant l’intervalle
de temps t qui suit le temps initial t = 0, on obtient la variation d’énergie
interne,

∆Ui→f =

∫ Uf

Ui

dU =

∫ t

0

U̇ dt′ =

∫ ∆t

0

P ext dt′ = P ext

∫ t

0

dt′ = P ext t

L’augmentation d’énergie interne ∆Ui→f pour une augmentation de tem-
pérature ∆Ti→f du liquide s’écrit,

∆Ui→f = M cM ∆Ti→f

Ainsi, en comparant ces deux équations, on obtient l’expression suivante
pour l’augmentation de température,

∆Ti→f =
P ext t

M cM
= 3.8K

2) Le premier principe (2.39) s’écrit,

U̇ = T Ṡ = P ext ainsi Ṡ =
P ext

T

Étant donné que T0 est la température au temps initial t = 0, la variation
de température s’écrit,

∆Ti→f = T − T0

Par conséquent, le résultat obtenu au point précédent est mis sous la forme
suivante,

T = T0 +
P ext

M cM
t

Ainsi, la différentielle de l’entropie s’écrit,

dS = Ṡ dt =
P ext

T
dt =

P ext dt

T0 +
P ext

M cM
t

= M cM


P ext

M cM T0
dt

1 +
P ext

M cM T0
t


L’accroissement d’entropie durant le processus de brassage est obtenu en
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intégrant cette équation par rapport au temps,

∆Si→f =

∫ Sf

Si

dS =

∫ S(t)

S(0)

dS =

∫
t

0

M cM


P ext

M cM T0
dt′

1 +
P ext

M cM T0
t′


= M cM ln

(
1 +

P ext t

M cM T0

)
= 7.55 JK−1

2.8 Processus adiabatique réversible sur un gaz

Un gaz parfait à pression p et volume V est tel que son énergie interne
est donnée par U = c p V , où c est une constante sans dimension. Déterminer la
pression p (V ) pour une compression ou une expansion adiabatique réversible.

2.8 Solution

Comme le processus est adiabatique et réversible, il n’a pas de variation d’en-
tropie. On peut donc utiliser le volume V comme unique variable d’état. Ainsi,
l’énergie interne s’écrit U (V ) = c p (V )V . La dérivée de l’énergie interne par
rapport au volume est donnée par,

dU

dV
=

d

dV
(c p V ) = c

dp

dV
V + c p = − p

qui peut être remis en forme comme,

dp

p
+ γ

dV

V
= 0

où γ = (c+ 1) /c. L’intégration de cette expression de l’état initial (pi, Vi) à
l’état final (pf , Vf ) est écrite comme,∫ pf

pi

dp

p
+ γ

∫ Vf

Vi

dV

V
= 0

ce qui donne,

ln

(
pf
pi

)
+ γ ln

(
Vf

Vi

)
= 0 ainsi ln

(
pf V

γ
f

pi V
γ
i

)
= 0

Par conséquent, les variables initiales et finales sont liées par,

pi V
γ
i = pf V

γ
f

ce qui donne l’identité,
p V γ = cste
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2.10 Compression thermique d’un ressort

On considère un piston de masse négligeable coulissant sans frotte-
ment dans un cylindre de section d’aire A, attaché à un ressort dont la constante
de rappel est k (fig. 2.2). Lorsque le cylindre est vide, le piston se trouve
en position x0. On le remplit d’un gaz parfait qui satisfait l’équation d’état
p V = NRT . L’énergie interne du gaz est donnée par U = cNRT où c > 0
est une constante et R > 0 également. Après remplissage, il se trouve alors à
l’équilibre en position initiale xi. On chauffe le cylindre qui se trouve alors à
l’équilibre en position finale xf . On suppose que ce processus est réversible et
que le système se trouve dans une enceinte à vide, c’est-à-dire que la pression
dans l’enceinte est nulle. La masse du piston n’est pas prise en considération
ici.

Fig. 2.2 Un piston enfermant un gaz passe de la position xi à la position xf , lorsque le
gaz contenu dans le cylindre est chauffé. Le piston est retenu par un ressort de constante
élastique k. La position au repos du ressort est en x0.

1) Déterminer les volumes initial Vi et final Vf , la pression initiale pi et fi-
nale pf , et les températures initiale Ti et finale Tf du gaz en termes des
paramètres k, A, x0, xi et xf .

2) Montrer que la dérivée de la pression p par rapport au volume V est de la
forme,

dp

dV
=

k

A2

3) Déterminer le travail −Wi→f effectué par le gaz sur le ressort lorsque le
piston se déplace de xi à xf en termes des paramètres k, xi et xf .

4) Déterminer la variation d’énergie interne ∆Ui→f du gaz lorsque le piston
se déplace de xi à xf en termes des paramètres k, c, x0, xi et xf .

5) Déterminer la chaleur Qi→f fournie au gaz lorsque le piston se déplace de
xi à xf en termes des paramètres k, c, x0, xi et xf .

2.10 Solution

1) Dans les états d’équilibre initial i et final f , les volumes initial et final du
gaz parfait sont,

Vi = Axi et Vf = Axf
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et les pressions initiale et finale du gaz parfait valent,

pi =
Fi

A
=

k

A
(xi − x0) et pf =

Ff

A
=

k

A
(xf − x0)

où Fi et Ff sont les normes initiale et finale de la force élastique agissant
sur le ressort. Vu que le processus est réversible, la pression du gaz parfait
est égale à la pression exercée par le ressort. Les températures initiale et
finale du gaz parfait sont,

Ti =
piVi

NR
=

k

NR
(xi − x0)xi et Tf =

pfVf

NR
=

k

NR
(xf − x0)xf

2) La variation infinitésimale de pression du gaz dp peut être exprimée en
termes de la variation de volume infinitésimal dV grace à la variation infi-
nitésimale de la norme de la force élastique dF = k dx,

dp =
1

A
dF =

k

A
dx =

k

A2
dV

Ainsi,
dp

dV
=

k

A2
= cste

3) Par conséquent, la pression p est une fonction linéaire du volume V ,

p =
k

A2
(V − V0)

Le travail −Wi→f effectué par le gaz parfait sur le ressort est donné en
termes de Vi et Vf par,

− Wi→f =

∫ Vf

Vi

p dV =
k

A2

∫ Vf

Vi

(V − V0) dV

=
k

2A2

(
V 2
f − V 2

i

)
− k

A2
V0 (Vf − Vi)

On peut réécrire ce résultat en termes de x comme,

− Wi→f =
k

2

(
x2
f − x2

i

)
− k x0 (xf − xi)

=
k

2

(
(xf − x0)

2 − (xi − x0)
2
)
> 0

Le travail effectué par le gaz parfait sur le ressort est égal à la variation
d’énergie élastique du ressort lors de sa compression, ce qui signifie qu’il
est entièrement utilisé pour comprimer le ressort. Ceci est une conséquence
du fait que la dilatation du gaz parfait est un processus réversible.

4) La variation d’énergie interne ∆Ui→f est donnée par,

∆Ui→f = cNR (Tf − Ti) = c k
(
(xf − x0)xf − (xi − x0)xi

)
> 0
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5) Compte tenu du premier principe (1.65), la chaleur fournie au gaz s’écrit,

Qi→f = ∆Ui→f − Wi→f = c k
(
(xf − x0)xf − (xi − x0)xi

)
+

k

2

(
(xf − x0)

2 − (xi − x0)
2
)
> 0


